Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain.

Identifieur interne : 001F89 ( Main/Exploration ); précédent : 001F88; suivant : 001F90

Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain.

Auteurs : Jessica L. Linville ; Miguel Rodriguez ; Steven D. Brown ; Jonathan R. Mielenz ; Chris D. Cox [États-Unis]

Source :

RBID : pubmed:25128475

Descripteurs français

English descriptors

Abstract

BACKGROUND

The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum.

RESULTS

In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell defense mechanisms.

CONCLUSION

These results suggest the mechanisms of tolerance for the Populus hydrolysate-tolerant mutant strain of C. thermocellum are based on increased cellular efficiency caused apparently by downregulation of non-critical genes and increasing the expression of genes in energy production and conversion rather than tolerance to specific hydrolysate components. The wild type, conversely, responds to hydrolysate media by down-regulating growth genes and up-regulating stress response genes.


DOI: 10.1186/s12866-014-0215-5
PubMed: 25128475
PubMed Central: PMC4236516


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain.</title>
<author>
<name sortKey="Linville, Jessica L" sort="Linville, Jessica L" uniqKey="Linville J" first="Jessica L" last="Linville">Jessica L. Linville</name>
</author>
<author>
<name sortKey="Rodriguez, Miguel" sort="Rodriguez, Miguel" uniqKey="Rodriguez M" first="Miguel" last="Rodriguez">Miguel Rodriguez</name>
</author>
<author>
<name sortKey="Brown, Steven D" sort="Brown, Steven D" uniqKey="Brown S" first="Steven D" last="Brown">Steven D. Brown</name>
</author>
<author>
<name sortKey="Mielenz, Jonathan R" sort="Mielenz, Jonathan R" uniqKey="Mielenz J" first="Jonathan R" last="Mielenz">Jonathan R. Mielenz</name>
</author>
<author>
<name sortKey="Cox, Chris D" sort="Cox, Chris D" uniqKey="Cox C" first="Chris D" last="Cox">Chris D. Cox</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA. ccox9@utk.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25128475</idno>
<idno type="pmid">25128475</idno>
<idno type="doi">10.1186/s12866-014-0215-5</idno>
<idno type="pmc">PMC4236516</idno>
<idno type="wicri:Area/Main/Corpus">002046</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002046</idno>
<idno type="wicri:Area/Main/Curation">002046</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002046</idno>
<idno type="wicri:Area/Main/Exploration">002046</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain.</title>
<author>
<name sortKey="Linville, Jessica L" sort="Linville, Jessica L" uniqKey="Linville J" first="Jessica L" last="Linville">Jessica L. Linville</name>
</author>
<author>
<name sortKey="Rodriguez, Miguel" sort="Rodriguez, Miguel" uniqKey="Rodriguez M" first="Miguel" last="Rodriguez">Miguel Rodriguez</name>
</author>
<author>
<name sortKey="Brown, Steven D" sort="Brown, Steven D" uniqKey="Brown S" first="Steven D" last="Brown">Steven D. Brown</name>
</author>
<author>
<name sortKey="Mielenz, Jonathan R" sort="Mielenz, Jonathan R" uniqKey="Mielenz J" first="Jonathan R" last="Mielenz">Jonathan R. Mielenz</name>
</author>
<author>
<name sortKey="Cox, Chris D" sort="Cox, Chris D" uniqKey="Cox C" first="Chris D" last="Cox">Chris D. Cox</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA. ccox9@utk.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC microbiology</title>
<idno type="eISSN">1471-2180</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (isolation & purification)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Cellulose (chemistry)</term>
<term>Clostridium thermocellum (drug effects)</term>
<term>Clostridium thermocellum (genetics)</term>
<term>Clostridium thermocellum (growth & development)</term>
<term>Culture Media (chemistry)</term>
<term>Drug Tolerance (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Hydrolysis (MeSH)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Plant Extracts (isolation & purification)</term>
<term>Plant Extracts (pharmacology)</term>
<term>Populus (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Antibactériens (isolement et purification)</term>
<term>Antibactériens (pharmacologie)</term>
<term>Cellulose (composition chimique)</term>
<term>Clostridium thermocellum (croissance et développement)</term>
<term>Clostridium thermocellum (effets des médicaments et des substances chimiques)</term>
<term>Clostridium thermocellum (génétique)</term>
<term>Extraits de plantes (isolement et purification)</term>
<term>Extraits de plantes (pharmacologie)</term>
<term>Hydrolyse (MeSH)</term>
<term>Milieux de culture (composition chimique)</term>
<term>Populus (composition chimique)</term>
<term>Tolérance aux médicaments (MeSH)</term>
<term>Voies et réseaux métaboliques (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cellulose</term>
<term>Culture Media</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cellulose</term>
<term>Milieux de culture</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Clostridium thermocellum</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Clostridium thermocellum</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Clostridium thermocellum</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Clostridium thermocellum</term>
<term>Metabolic Networks and Pathways</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Clostridium thermocellum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Clostridium thermocellum</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Antibactériens</term>
<term>Extraits de plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antibactériens</term>
<term>Extraits de plantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Tolerance</term>
<term>Gene Expression Profiling</term>
<term>Hydrolysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Hydrolyse</term>
<term>Tolérance aux médicaments</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell defense mechanisms.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>These results suggest the mechanisms of tolerance for the Populus hydrolysate-tolerant mutant strain of C. thermocellum are based on increased cellular efficiency caused apparently by downregulation of non-critical genes and increasing the expression of genes in energy production and conversion rather than tolerance to specific hydrolysate components. The wild type, conversely, responds to hydrolysate media by down-regulating growth genes and up-regulating stress response genes.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25128475</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2180</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>BMC microbiology</Title>
<ISOAbbreviation>BMC Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain.</ArticleTitle>
<Pagination>
<MedlinePgn>215</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12866-014-0215-5</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell defense mechanisms.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">These results suggest the mechanisms of tolerance for the Populus hydrolysate-tolerant mutant strain of C. thermocellum are based on increased cellular efficiency caused apparently by downregulation of non-critical genes and increasing the expression of genes in energy production and conversion rather than tolerance to specific hydrolysate components. The wild type, conversely, responds to hydrolysate media by down-regulating growth genes and up-regulating stress response genes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Linville</LastName>
<ForeName>Jessica L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rodriguez</LastName>
<ForeName>Miguel</ForeName>
<Initials>M</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>Steven D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mielenz</LastName>
<ForeName>Jonathan R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cox</LastName>
<ForeName>Chris D</ForeName>
<Initials>CD</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA. ccox9@utk.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Microbiol</MedlineTA>
<NlmUniqueID>100966981</NlmUniqueID>
<ISSNLinking>1471-2180</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048013" MajorTopicYN="N">Clostridium thermocellum</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004361" MajorTopicYN="Y">Drug Tolerance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25128475</ArticleId>
<ArticleId IdType="pii">s12866-014-0215-5</ArticleId>
<ArticleId IdType="doi">10.1186/s12866-014-0215-5</ArticleId>
<ArticleId IdType="pmc">PMC4236516</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2012;13:102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22433311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Aug;185(15):4539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12867463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Biotechnol. 2012 Feb 15;29(3):345-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21925629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Sep 7;287(37):31165-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22810230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Oct;75(19):6132-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13752-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21825121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2010 Jul;12(4):307-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20346409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2014 Jan;196(2):287-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24187083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Dec 02;6(1):179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24295562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2001 Apr;4(2):126-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11282466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2013;7:120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24196194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Dec;3(12):969-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16261177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Sep;18(9):1509-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2011;11:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21672225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Sep 12;6(1):131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24028713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12:228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21649912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(12):220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21176179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2011;11(1):22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21269440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2012 Oct 31;161(3):354-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22537853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Nov;92(3):641-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21874277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Dec;74(24):7709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1993;47:441-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8257105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1980 Nov;144(2):569-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7430065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24299206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Jun;87(2):391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20414652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Nov;66(4):829-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17919287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jan;4(1):e23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 May 08;6(1):73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23657055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8063-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10869437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Dec 20;434(2):202-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23123013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20484677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br Med J (Clin Res Ed). 1988 May 7;296(6632):1313-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3133061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1995 Mar;59(1):1-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7708009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2002 Nov;4(11):703-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12460278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(4):e5271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19384422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Oct;92(1):199-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21837436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2012 Jun 20;167(6):364-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22494898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2007;3:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17453047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012;12:295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23249097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2007 May;9(3):258-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17292651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 May;185(10):3042-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2012 Sep;194(9):759-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22484477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2012 Oct 31;161(3):366-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22484128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Feb;190(3):843-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17993531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2010 Apr 15;105(6):1131-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19998280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(10):e78829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24205326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22823947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010;11:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20167110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Nov;147:605-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24036527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012;12:180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22897981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):33-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Jul;95(1):189-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22592554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2013 Jan;15:151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Feb;12(2):323-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179418</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Brown, Steven D" sort="Brown, Steven D" uniqKey="Brown S" first="Steven D" last="Brown">Steven D. Brown</name>
<name sortKey="Linville, Jessica L" sort="Linville, Jessica L" uniqKey="Linville J" first="Jessica L" last="Linville">Jessica L. Linville</name>
<name sortKey="Mielenz, Jonathan R" sort="Mielenz, Jonathan R" uniqKey="Mielenz J" first="Jonathan R" last="Mielenz">Jonathan R. Mielenz</name>
<name sortKey="Rodriguez, Miguel" sort="Rodriguez, Miguel" uniqKey="Rodriguez M" first="Miguel" last="Rodriguez">Miguel Rodriguez</name>
</noCountry>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Cox, Chris D" sort="Cox, Chris D" uniqKey="Cox C" first="Chris D" last="Cox">Chris D. Cox</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25128475
   |texte=   Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25128475" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020